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ABSTRACT

Peculiarities of energy diffusion in the well-known mo-
del of a quantum rotator excited by an external perio-
dic 6-like field are investigated in Wigner representa-
tion. It is shown that in semi-classical region of para-
meters the quantum diffusion can be approximately
described by means of classical mappings in discrete
phase space. Both the phenomenon of quantum limita-
tion of classical diffusion and the quantum resonance
for which the mean energy is increasing quadra'tically
in time manifests itself the motion of such classical
models.
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1. INTRODUCTION

Much attention has been recently paid to the study of quantum
systems which are chaotic in the classical limit (see, for instance,
[1—12]). It is due to the fact that chaos is a typical phenomenon
in classical dynamical nonlinear systems, even with a few degree of
ireedom and the development of quantum-mechanical methods for
the analysis of such system is an important and urgent task. Inves-
tigation of the quantum chaos in simple models [1, 3, 12] showed
that even in deep semi-classical region quantum effects can play an
essential role. Main phenomenon is a restriction of chaotic diffusion
which takes place in the corresponding classical systems. This phe-
nomenon can be important, for example, in the case of strong exci-
tation of quantum systems in semi-classical region by external cohe-
rent fields (Hydrogen atom [13, 14], moleculas [15], etc.).

The present paper concerns the investigation of peculiarities of
energy diffusion in intensively studied simple model of quantum
stochastisity —a quantum rotator excited by a periodic sequence of
d-impulses:

fi=7 1 efp) T sa—T); A=—ic. (1.1)
[=— o0

The model (1.1) contains itseli the most interesting peculiarities
of dynamical behaviour of quantum systems which are chaotic in
the classical limit (k=0). Such a model can be approximately-
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describe a real physical system with nonequidistant unperturbed
‘spectrum under strong external field which has a large number of
harmonics. Here 0 is the phase variable, [=hnn is the operator of
momentum, y~' is momentum coefficient, ¢ and T — the strength
and period of perturbation. In what follows we assume
f(042n) =[(0) with [f(0)|~L.

For the first time the system (1.1) with f(8) =cos® was numeri-
cally investigated in [3]. The main result [3] consists in the disco-
very of considerable differences in behaviour of a quantum system
in comparison with the classical one in the case when classical mo-
tion is chaotic with a characteristic linear increase of mean energy
of the system. In particular, the rate of the energy growths corres-
ponds to the classical one only during some time {<t", which de-
pends essentially on the parameters of the system; then it sharply
“drops. Further investigation of peculiarities of such behaviour was
made in [4] where it was shown analytically that for rational value
of parameter C:

b TIT, (1.2)
2n

asymptotic form E, is quadratic: Ei~t? for t—oo. In such notation
(1.2) the value {=2 corresponds to the so-called main quantum re-
sonance in Refs [3, 4].

The results of numerical investigations of the main energy in-
~crease for the quantum rotator can be formulated in the following
way. When the value of parameter { is ‘equal to a «good» number
t=r/q (r and ¢ are not too large) the mean energy increase has
strongly quadratic dependence starting from #=0. When the ratio-
nal number ¢ is worsened, r, g—>oo; r/g=const (it corresponds to
the transition to the irrational value {) the law of mean energy in-
crease shows characteristic limitation of classical diffusion for rela-
tively large times and only after this time asymptotic quadratic be-
haviour starts to manifest itself (see, also [11]). It is interesting to
note, that in the numerical experiments we always have the case of
quantum resonance because of the finite digits of all numbers.
However, the behaviour of the system is to be corresponding to the
nonresonant case during enormous large time. It can be shown [5]
that the wave functions for two close values of parameter { differ
by a small value ~0C =L —Cal:

] 2a
éln' 0 1, (0, 1) — 0, (0,0) 1 < %*P8L;  x=se/h. (1.3)
0
Therefore, for our purpose one can confine oneseli to the analy-
sis of the system (1.1) only for rational values {. The case of ratio-
nal values of ¢ (1.2) can be also of special interest since it corres-
ponds to resonances

= ER+| _Eﬂ s (2f1+]) rQ ’

h o !

(En=7yh*n*/2; Q=2n/T)

between harmonics of frequency of unperturbed system and harmo-
nics of that external force.

There are a number of works in which the above mentioned pe-
culiarities of dynamics of a quantum rotator is investigated from
different points of view (see, for example, [5—12]). The present
paper is devoted to the investigation of the system (1.1) on the ba-
sis of formalism of Wigner function. The advantage of Wigner’s for-
mulation of quantum mechanics consists in the fact that evolution
of the system occurs, by analogy with the classical case, in the
phase plane (see, for example, rewiev [16]). Therefore, for the pur-
pose of comparison of classical and quantum dynamics the "Wigner
representation suits mostly and allows, to our opinion, to explain
characteristic peculiarities of the behaviour of a quantum rotator
using semi-classical language.

The structure of this paper is the following. Main formulae and
statements concerning Wigner representation for the quantum rota-
tor which partially contains Ref. [11] are given in the next section.
It is shown that Wigner representation naturally leads to the «clas-
sical model of quantum stochastisity» which has been phenomenolo-
gically introduced in [10] for the account of influence of the discre-
teness of phase space on system’s dynamics. Section 3 contains
analytical and numerical investigation of the properties of such
classical model of quantum stochastisity. In the last Section 4 the
results concerning the law of the mean energy increase for the
system (1.1) and for the classical models are compared.




2. WIGNER REPRESENTATION FOR THE QUANTUM ROTATOR

Let A be an arbitrary operator which is a function of an angle
variable and of operator h=—id)00; A=A(8,7)=A(0+42mn,1n).
Then one can determine mutually single-valued transformation of
the operator A to c-number function that will be called a transiorm
of the operator A: :

A®, 1) «ralp,p); O0<g<2n; p=0,xl,.. (2.1)

The convolution.of a product of two operators has the form:

- 2n
Z ﬁ { doale, p)-blg. p) - (2.2)
S 0 ¢

Tr[ A0, ) B(®, 1)] =
P

Evolution of the quantum rotator will be described by a density
matrix p at time moment immediately before the t-th kick. Using
(2.1) and an explicit form of the Hamiltonian (1.1) one can obtain
an equation for evolution of Wigner function (a transform of matrix
density) for one period of motion. The mapping has the simplest
analytical form in the case of a choice of [(8) =cos 20 which will be
analysed in what follows: '

o0 2n

o1 (@p)= Y (do' 8¢ +2aLp—9) Jy—p (2% sin2¢") p1(@',P) - (2.3)

pP=—o 0

Here ¢ and » are determined in (1.2), (1.3); Jp(2) are Bessel func-
tions; & is a periodic 8-function with a period 2. The state of the
rotator with a definite value p will be chosen as the initial condition
which corresponds to

1
po (@, p) = z—n-t‘»p.p., .

Note two circumstances which follows immediately from (2.3).
First of all, the mapping of Wigner function is local in phase and
nonlocal in action. Secondly, in the quantum case due to discrete-
ness of phase space in action /="hp one can choose invariant count-
able sets

@n={Qo+2nln}s; n=0 xl,.. (2.4)
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where {...},, means a fractional part on modulo 2z, and ¢ is an ar-
bitrary initial phase (see Fig. 1). Evolution of Wigner function
pi(9,p) on a set {@,) does not depend on values p:(¢, p) in different
parts of phase space of measure 1. In the case when { is rational,
t=r/q, the sequence of phases {g.} in (2.4) is finite (0<<n<Cgq). In
the case when { is irrational the sequence {¢,} is infinite and den-
sely covers an interval 0<<¢<2n. This difference leads to the diffe-
rence in expressions for quantum-mechanical averages for an arbit-
rary operator (A(f)Y=Tr [/’ifn]. In particular, for {=r/q from
(2.2) we have
2n
A0y =" dgo]
0

L q9

|
L L aenp)e™ (@n n]. (2.5)

p=

Here a(g, p) is a transiorm of the operator A, the upper index (o)
indicates an explicit dependence of Wigner function on the phase go.

For our further purposes it is convenient to pass from relations
(2.3) to dynamic equations of motion for p and ¢. Introduce the fol-
lowing transformations:

Pir1 =P+ 2% sin 2q; i +Apy ;

2.6
Prr1={o+2nL priilon, ke

where p; dimensionless integer quantum action; operation [...Jin
means that the integer part is taken; Ap, is a discrete integer value
distributed according to some specific law W(Ap;). Requirement of
the discreteness of action variable dictates the presence of the ope-
ration [...]Ji in (2.6) and introduction of an additional quasi-ran-
dom term which reflects the fact of nonlocality of the mapping
(2.3) in action. It is easy to see that for the mapping (2.6) to lead
the evolution law (2.3) it is necessary to choose the distribution
function W(Ap/) in the form '

a

W(Ap) = o= § d& exp—iEApi—i§[ 2xsin 29 i+

+ 2ix sin2¢-sinf}. | (2.7)

For simplicity we confine ourselves to the case of x> 1. Then



W(Ap) ~ # | dt exp[ —iEApi—2in(E—sinE) -sin2q] = W(Ap).

Function W(Ap:) has the following properties:
LW =1;" YApWAp)=0; )(Ap)* Wap)=0. ~  (28)
Ap P

\p

These expressions allow to assume that for x> | the contribution of
the term Ap; (see (2.6)) in the action diffusion can be considered
small, and behaviour of the rotator is approximately described by
the following mapping:

Piy1=p; [ 2% sin 2qq]in ,
(2.9)
Qo1 = {42084 1 Jon -

This model was phenomenologically introduced [10] for the ac-
count of influence of discreteness of phase space on the behaviour
of the systém. Numerical analysis [10] shows that the model (2.9)
is capable of describing limitation of quantum diffusion qualitati-
vely. Further, following [10] we shall refer to (2.5) as the «classi-
cal model of quantum stochastisity».

To estimate the influence of nonlocality in (2.6) we write the
kernel of transformation in (2.3) as the sum of two terms

K'Q o ch"" Ky- Here

Ke(p, ple’, p) =5(£P' +288p — @) 8y, pr 4 [ 2usin 29 (2.10)
proviéled Wigner function evolution according to the classical model
of quantum stochastisity (2.9), and K, = K, — K, is responsible for
nonlocality of transformation of Wigner function (2.3) Then time
evolution of the Wigner function can be written as

£ |
pi=(Reg+ Ky)' po: po= 58,0 (2.11)

where Kq_vp has the meaning
2n
Raove= §de’ Y Kqv(polp', o) o', 9) .
0 P
The product in (2.11) has 2' terms which are the products of opera-
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tors R’cq and R’V in different combinations. Therefore, the expression
for mean energy of the system it is convenient to represent in the
following form:

1 . A Af—1 1
E=5- {do ) B[Ry +Rq 'R+
p
+ KK+ Ry Key) + - + R po. (2.12)

Using (2.8) it can be shown that at x> 1 the terms which have
K, on the right side are relatively small. It means that all of the
terms in (2.12) are ordered by the value of contribution into mean
energy. It should be mentioned that only the first term in (2.12)
gives positive contribution. The rest terms may have arbitrary signs.
To check these statements we have made the numerical calculations
of mean energy of the system on the basis of the formula (2.12)
with parameters 2%x=10.2, t=1/16 for the first four steps
(t=1,...,4). The numerical data show that relative contribution into
the mean energy of terms corresponding to different combinations of
operators ‘Key and K, is in good agreement with the order of their po-
sition in the expression (2.12). In particular, the ratio of contribu- -
tions of the last and the first terms in (2.12) has the order of 1%.

3. CLASSICAL MODEL OF QUANTUM STOCHASTICITY

The results of the previous section show that at x> 1 the energy
increase for the quantum rotator is mainly determined by the pro-
perties of the mapping for K... Pass on to the analysis of the classi-
cal model of quantum stochastisity (2.9). In what follows we shall
investigate the behaviour of the system (1.1) at rational values
t=r/qg. The case of irrational { will be considered as transition
r,g—oo. As it was mentioned in Section 2, for rational values C in
(2.9) the trajectory of each particle is on the invariant set (see
Fig. 1) consisting of g points of phase ¢. Since all the values of a
phase ¢ are numbered it is convenient to rewrite the mapping (2.9)

in the form:

Piyr1=p +[2-,¢ sin 2(‘Pn+23%fh)]

int

= m4piyilg- ] (3.1)
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In (3.1) n; is discrete phase (0<<n;<<g) on the ¢-th step of
transformation, [...], is the integer part modulo g. It is easy to see

p, Ishp that the mappings (3.1) are invariant
<o v 4 with respect to the shift n—n+4g and
3 ’,‘ A e » p—p—+gq. Thus, motion of the particle can
FARE be considered on a torus consisting of
i ST N=¢g X g points, and any trajectory can

be characterized by two parameters. The
first is period M—the number of steps
before the locking of trajectory (since the
number of points on a torus is finite any
¥ trajectory for M<C N steps will lock). The
Bils second parameter is the number of rota-
e, 27 tions J round torus along the axis of
Fig. 1. Invariant set (repre- action which the trajectory has made be-
sented by points) for the pa-  fore locking. As examples two trajectories
rameter value L=1/8. As an  |ocked on a torus with the number of ro-
"i’éf’gr;'p'fgd‘l:;’ ;;a‘f(f::j;'efvif}: tations 1 and 0 are represented in Fig. 1.
the ~ himbér © of, -rotetions Let us estimate characteristic values
equal to 1 and 0 are shown.  of parameters M and J. Two limitting ca-
ses are possible: a) 2x=¢ and b) 2x<q.
In the first case any point of a torus is accessible for a particle at
every step. Supposing that the particle moves randomly in the dis-
crete phase space it is easy to estimate probability that the trajec-
tory will not lock for M steps

P(M) =~ exp(—M?/2N); M/N<I. (3.2)

Assuming P(M)~0.5, we have a characteristic period of trajec-
tories

M=N=g. (3.3)

It can be shown that in this case trajectories with nonzero number
of rotations J necessarily exist, the relative number of these trajec-
tories being sufficiently large.

Suppose now we make a transition to the irrational value € in-
creasing values r and g. Then the second case is to be realized:
2x < q. It means that not the whole region of a torus is accessible
for a particle at every step of transformations. Assuming that the
classical diffusion occurs along the axis of action we can estimate
the number of points of phase space occupied by the motion of the

10

~ system: N~ xq-\/é-t . Then for the time of locking M;~/N we have

M ~ (xq)*3. (3.4)

The estimate (3.4) is essentially some upper estimate since it is
based on the assumption of accessibility of the considered region of
phase space at each step of transformation. In this case the probabi-
lity for the trajectory to be locked without any rotation round torus
is increased (in comparison with the first case). The condition for
realization of such phenomenon can be represented in the form

%x\/2M| <<gq. Substituting value M} from (3.4) we find the critical

relation
2% < g. (3.5)

If this relation takes place then the majority of trajectories is locked
on a torus without any rotation (/=0).

Existence of the critical relation (3.5) for parameters » and g is
illustrated in Fig. 2 (a—c) where trajectories of g=101 particles
on a torus with the initial distribution po=0 are represented. Value
of the parameter { is equal {=10/101. In case of Fig. 2,a
(2x=5.0) there is no trajectory with the rotations on a torus along
the axis of action. Fig. 2,b corresponds to value 2x=10.0, in this
case six trajectories have made one rotation. In the case of Fig. 2,c
2%=20.0 four trajectories have value /= +1, fourteen — J==+2,
two — J=43.

Pass on to the analysis of the mean energy increase for the
system (2.9). Consider the set of particles uniformly distributed on
the interval [0, 2n]. Choose an arbitrary point from the set. Due to
the fact that the term [2x sin @/ represents itself a step function,
and locking of the trajectory occurs on a torus after a finite number
of steps we can surround the chosen point by some small (but
finite) region Age, any point from which move according to the
same law. Thus, the time dependence for mean energy of the system
Ei= (p?) /2 can be represented in the form

1 t p
E=— Z:Aqak [quE +f,,(z)] : E:Arp,.=2n (3.7)

where J is the number of rotations, M. is a period of trajectory,
fx(t) is some periodic function with a period M. Note, that in the
numerical experiment such blocks Age is well observed.
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Fig. 2. Numerical data for mapping (3.1). Figures show trajectories on torus of ¢=101 par-

0.0; a) 2x=5.0,

b) 2x=10.0, ¢) 2x=20.0. In «a» case all trajectories have value /=0 (/ is the number of ro-

10/101, go=

ticles «starting» from the bottom line. Values of parameters {

in «c»

=4+1;

in «b» case six particles have [/

tations round torus along the axis of action);

= 492, two have J= +3.

+ 1, fourteen have [/

case four have J

From (3.7) it follows that if the number of trajectories with ze-
ro values [/, is small the behaviour of E, at finite times will be simi-
lar to quasi-periodic one. In the opposite case the law of energy in-
crease will have strongly quadratic character. The number of points
with nonzero values of J. will apparently depend on relation be-
tween parameters of the system (3.5). Plots of increasing mean
energy of the system are represented in Fig. 3 up to times {=200
for the values of parameters 2x=10.0 and 2x=20.0 and different
values of parameter { (curves B). Values {=r/g are chosen to be
proportional to the terms of the series of «golden mean»; thus, ¢

tends to (\/5_——1)/20 with r, g increase. Averaging was made over
the segment [0, 2n] which consists of the system of two thousand
uniformly distributed particles. To control the evolution of the
system we increased the ensemble of averaging up to four thousand
particles. This, practically, doesn’t change the dependence E; for
times intervals under consideration. Numbers in figure correspond
to the maximal value of energy on the vertical axis. It is seen from
the figure that there occurs a change of a quadratic regime to that
of «diffusion limitation».

Now ‘we discuss the problem of the time scale #; of diffusion li-
mitation. As it was mentioned, time ¢; has the meaning of limitation
time of classical diffusion for the quantum system (1.1) only when
€ is the irrational number. However, in numerical experiments one
can use the resonance case {=r/q at sufficiently large r and ¢. As
it is seen from Fig. 3, plots E, for £=377/6100 and {=1597/25340
do not practically differ on the considered time scale, and this indi-
cates convergence of E((L,) to E«(Li) at §,=r/g—Ul:, (existence of
such a convergence for the quantum rotator (1.1) is guaranteed by
the estimate (1.3)).

It is evident that for our model with discrete phase space time ¢,
is associated with the characteristic times of the locking of trajecto-
ries. The information about a period of locking trajectories can be
obtained from the function P(M) which represents itseli probability
of unlocking trajectory within time interval M. In the numerical ex-
periment the function P(M) was calculated as the ratio of trajecto-
ries which are not locked up to time moment M to their total num-
ber. The typical dependence P(M) up to M=400 is represented in
Fig. 4. Numerical experiment shows that the form of P(M) does not
change with r/q (r/g—:) increasing; i. e. at a given value of g,
P(M) is a function of only x.
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Fig. 3. Mean energy increase up to time =200 for classical rotator (curves A),
classical model of quantum stochastisity (curves B), quantum rotator “(curves C).

Numbers in figure show the scale ol E, along vertical axis.
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When the dependence P(M) is known it is easy to obtain the up-
per estimate for the law of increasing E.. Supposing that the energy
increase of a particle for time t<<M (M is a period of locking) is
determined by the diffusion law and taking into account the fact
that aiter times = M the particle under consideration does not con-
tribute to E; increase we have

Ei< ¥ JSP(M) dM. (3.8)

0

Thus, E. deviates from the classical linear diffusion law, and by
analogy with a quantum case it is possible to introduce diffusion li-
mitation time ts for the model (2.9). As it is seen from Fig. 4, pro-
bability function P(M) besides characteristic time M} (3.4) (which,
practically, corresponds to the length of a «tail» of the function
P(M)) has another characteristic time M5 determining a sharp ini-
tial decrease of function P(M). Time M3 does not depend on ¢ and
determines, according to (3.8), the diffusion limitation time f4 in the
classical model of quantum stochastisity.

Rough estimate for time M; can be obtained if we assume that

the number of accessible points in phase @ of the order ®x\2M: is
equal to the number of these points in p. In this case for the effec-

tive size of phase space we have N?~(x\/2M3)? that under condi-
tion Ma~~\/N: gives
M~ 25 (3.9)

The estimate (3.9) agrees with that of diffusion limitation time {4
for the quantum rotator [10]. In conclusion we note that inequality
(3.5) can also be obtained from the condition M < M.

4, CONCLUSION REMARKS

We represent some numerical results for the mean energy in-
crease for a classical model of quantum stochastisity (3.1) compar-
ing with the model of a quantum rotator (1.1) whose mean energy
has been calculated by the formula :

115 9 i po
E= Slp(e,f)(—w) 96,6 do; we,0)=¢"".

0
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From Fig. 3 (curves B and C) it is clear that a classical model of
quantum stochastisity describes approximately all peculiarities of
energy diffusion in the initial quantum system (1.1). When £ tends
to the irrational number (r, g—oo), and the condition 247« ¢ is ful-
filled, the system (3.1) reveals characteristic energy diffusion limi-
tation by analogy with a quantum model (1.1), for both models dif-
fusion limitation time coinciding by the order of magnitude.

It is important that the model (3.1) also describes a pure quan-
tum phenomenon called in [3, 10] as quantum resonance at which
mean energy has characteristic asymptotic form 2. In Fig. 3 such
type of motion is observed at g=50 and 340 for time f< 200. Ne-
vertheless, it is seen from Fig. 3 that curves B are situated in time
above curves C. Such behaviour is explained by the structure of the
series in (2.13) for the mean energy of a quantum rotator. As nu-
merical simulation show the terms of the series containing operator
K, and responsible for nonlocality of a quantum mapping give in
the sum negative contribution inte mean energy. Numerical data for
energy diffusion in the system of a classical rotator («standard
mapping») are presented in Fig. 3 (curves A); they correspond to
mapping (2.9) but with continuous action p (without operation

: [] mr).

We have also carried out numerical experiments at the same va-
lues of parameters as in Fig. 3 but for the initial occupation of the
first level of the system (po=1). Energy values E; in comparison
with the initial occupation of a zero level for time under considera-
tion differ not more than two times, qualitative behaviour of the
curves remaining the same. Apparently, for further comparison of
diffusion in models (1.1) and (3.4) it makes sense to choose the ini-
tial distribution in the form of a packet of levels; this will allow to
exclude large fluctuations which are connected with the initial con-
ditions.

In conclusion note that the developed above approach for the
study of dynamics of a quantum rotator (1.1) is, in fact, a new va-
riant of semi-classical approximation for the case when in the clas-
sical limit (A=0) the motion is chaotic (x=¢e/h>1; K=8axl>1;
t<1). In such approach the trajectories are not usual classical tra-
jectories of particle motion; but ones determined- by the equations
(2.9) (or (3.1)). Thus, we take into account the property of discre-
teness of phase space in action, and this enables to describe qualita-
tively such important property of the system as diffusion limitation.
Further constructing of perturbation theory in the semi-classical re-
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gion of parameters is connected with an account of terms in (2.13)
containing operators K;.

We express our deep gratitude to B.V. Chirikov for his constant

attention to this work and useful advice and D.L. Shepelyansky for

discussion.
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